1-2 Properties of Real Numbers

What You'll Learn

Skim the Examples for Lesson 1-2. Predict two things you think you will learn about the properties of real numbers.

- 1. _____
- 2. _____

Active Vocabulary

New Vocabulary Match the term with its definition by drawing a line to connect the two.

integers numbers that can be expressed as a ratio of two integers; the decimal form either terminates or repeats

real numbers numbers used for counting {1, 2, 3, ...}

natural numbers the set of numbers which represent all points on a

rational numbers numbers than cannot be expressed as a ratio of two integers; the decimal form neither terminates, nor repeats

whole numbers the counting numbers plus zero {0, 1, 2, 3, . . . }

irrational numbers the whole numbers and their opposites

Vocabulary Link Explain each of the mathematical representations of properties in your own words.

$$1. a + b = b + a$$

$$2 \cdot (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

$$3. a + (-a) = 0$$

Lesson 1-2 (continued)

Main Idea

Details

Real Numbers

p. 11

Write each of the following numbers into the appropriate location in the Venn diagram.

$$\left\{\sqrt{2}, 4, 0, \frac{2}{3}, 1000, \pi, 2.25, -22, 2.\overline{6541}\right\}$$

Real Numbers

Properties of Real Numbers

pp. 12-13

State the property represented in each equation.

1.
$$6.72 + (-6.72) = 0$$

2.
$$3b + 2b = (3 + 2)b$$

3.
$$-3(2 \cdot 5) = (-3 \cdot 2)5$$

4.
$$5 \cdot a = a \cdot 5$$

5. $\frac{6}{11} \cdot \frac{11}{6} = 1$

Helping You Remember How can the words commuter, association, and

distribution help you remember the difference between the commutative, associative and distributive properties?

1-2 Skills Practice

Properties of Real Numbers

Name the sets of numbers to which each number belongs.

$$2. -525$$

$$4.\frac{12}{3}$$

5.
$$-\sqrt{9}$$

6.
$$\sqrt{30}$$

Name the property illustrated by each equation.

$$7.3 \cdot x = x \cdot 3$$

$$8.3a + 0 = 3a$$

9.
$$2(r+w)=2r+2w$$

10.
$$2r + (3r + 4r) = (2r + 3r) + 4r$$

11.
$$5y(\frac{1}{5y}) = 1$$

12.
$$15x(1) = 15x$$

13.
$$0.6[25(0.5)] = [0.6(25)]0.5$$

14.
$$(10b + 12b) + 7b = (12b + 10b) + 7b$$

Find the additive inverse and multiplicative inverse for each number.

17.
$$-\frac{4}{5}$$

18.
$$3\frac{3}{4}$$

Simplify each expression.

19.
$$3x + 5y + 2x - 3y$$

20.
$$x - y - z + y - x + z$$

21.
$$-(3g + 3h) + 5g - 10h$$

22.
$$a^2 - a + 4a - 3a^2 + 1$$

23.
$$3(m-z) + 5(2m-z)$$

24.
$$2x - 3y - (5x - 3y - 2z)$$

25.
$$6(2w + v) - 4(2v + 1w)$$

26.
$$\frac{1}{3}(15d + 3c) - \frac{1}{2}(8c - 10d)$$

1-2 Practice

Properties of Real Numbers

Name the sets of numbers to which each number belongs.

2.
$$\sqrt{7}$$

$$3.2\pi$$

5.
$$\sqrt{\frac{25}{36}}$$

6.
$$-\sqrt{16}$$

$$7. -35$$

Name the property illustrated by each equation.

9.
$$5x \cdot (4y + 3x) = 5x \cdot (3x + 4y)$$

10.
$$7x + (9x + 8) = (7x + 9x) + 8$$

11.
$$5(3x + y) = 5(3x + 1y)$$

12.
$$7n + 2n = (7 + 2)n$$

13.
$$3(2x)y = (3 \cdot 2)(xy)$$

14.
$$3x \cdot 2y = 3 \cdot 2 \cdot x \cdot y$$

$$15. (6 + -6)y = 0y$$

$$16.\frac{1}{4}\cdot 4y=1y$$

17.
$$5(x + y) = 5x + 5y$$

18.
$$4n + 0 = 4n$$

Find the additive inverse and multiplicative inverse for each number.

$$20. -1.6$$

21.
$$-\frac{11}{16}$$

22.
$$5\frac{5}{6}$$

Simplify each expression.

23.
$$5x - 3y - 2x + 3y$$

$$24. -11a - 13b + 7a - 3b$$

25.
$$8x - 7y - (3 - 6y)$$

26.
$$4c - 2c - (4c + 2c)$$

27.
$$3(r-10s)-4(7s+2r)$$

28.
$$\frac{1}{5}(10a - 15b) + \frac{1}{2}(8b + 4a)$$

29.
$$2(4z - 2x + y) - 4(5z + x - y)$$

30.
$$\frac{5}{6} \left(\frac{3}{5}x + 12y \right) - \frac{1}{4} (2x - 12y)$$

- 31. TRAVEL Olivia drives her car at 60 miles per hour for t hours. Ian drives his car at 50 miles per hour for (t + 2) hours. Write a simplified expression for the sum of the distances traveled by the two cars.
- 32. NUMBER THEORY Use the properties of real numbers to tell whether the following statement is true or false: If a and $b \neq 0$ and a > b, it follows that $a\left(\frac{1}{a}\right) > b\left(\frac{1}{b}\right)$. Explain your reasoning.